RoofViews

Commercial Roofing

Commercial Roofing Systems: 4 Key Considerations for Building Owners

By Dawn Killough

October 27, 2021

Commercial Roofing Systems: 4 Key Considerations for Building Owners

Building owners have a lot to think about when selecting a roof for their commercial property. When it comes to commercial roofs, we have some information to help you understand what factors play a role in the roofing system's success, and its ability to protect the building, people and contents within it.

1. Products

There are several different types of commercial roofing systems, and each has different benefits. A roofing professional can help building owners decide between the following roofing system types depending on the unique needs of the building:

  • Single-ply: Single-ply membrane systems are the most popular commercial roofing material because single-ply is strong, durable, and provides robust protection against UV damage.

  • Liquid-applied: Liquid-applied roofing systems are also strong and durable, and they're ideal for challenging roofs with a lot of equipment and penetrations. Ensuring flashing integrity and regular membrane cleaning can help extend the life of a liquid-applied roofing system.

  • Modified-bitumen: A typical modified bitumen roofing system consists of two plies of roofing membrane. The membranes contain synthetic rubber which provides greater elongation than some other asphaltic systems. Modified-bitumen systems have a wide range of application methods, and can be hot-mopped, cold-applied, heat-welded or self-adhered.

  • Built-up roofing: Built-up roofs are the oldest of the current roofing technology, and consist of melting bricks of hot asphalt in a large metal kettle and using mops to apply that asphalt in-between a multi-ply BUR system.

It is recommended that all components of a roofing system are purchased from the same manufacturer. This helps ensure that the components are designed to work together. It also may make the system eligible for enhanced warranty or guarantee coverage from the manufacturer.

2. Energy

The rise of more stringent energy codes has increased the need for additional roof insulation and increased roof surface reflectivity. Increasing the amount of insulation in the roof and installing highly reflective roofing materials can help improve the energy efficiency of buildings.

3. Maintenance

Regular roof maintenance may be required in order to keep your manufacturer's guarantee or warranty in effect.

Maintenance programs can also help commercial building owners manage risk. Regular maintenance can help you address minor problems before they become expensive issues, which may ultimately help owners save money long-term.

Maintenance staff should perform regularly scheduled roof inspections at all locations to ensure that the roof is still in good shape. Look for dents, tears, ponding water, or other signs of damage. Roof drains should be cleared regularly to ensure that water is allowed to drain unimpeded. Regular inspections and maintenance allow potential problems to be discovered early, before they cause other damage.

Property maintenance companies and building owners can talk with manufacturers such as GAF to learn more about proper roof maintenance. Click here to get started.

4. Warranty/Guarantee

A good warranty or guarantee program is one of the top reasons commercial building owners may choose a particular roofing system. Building owners want to know that they can count on the manufacturer to address any covered issues that may arise. Many roofing manufacturers offer warranties or guarantees for building owners that have no dollar limit on covered repair expenses.

GAF offers several commercial roof system guarantees and warranties, ranging from 12 to 35 years of coverage, depending on the particular type of roofing system installed, how it is installed, and by whom. The Diamond Pledge NDL Roof Guarantee offers strong protection for commercial roofs—and for certain eligible systems, the coverage period can be extended by contracting with a GAF certified contractor* to provide maintenance throughout the roof's life. Additional requirements apply, see gaf.com for details.

With proper maintenance, the right roofing system can provide protection for years to come.


*Contractors enrolled in GAF certification programs are not employees or agents of GAF, and GAF does not control or otherwise supervise these independent businesses. Contractors may have agreed that they will use GAF roofing products, and may receive benefits, such as loyalty rewards points and discounts on marketing tools from GAF for participating in the program

About the Author

Dawn Killough is a freelance writer in the construction, finance, and accounting fields. She is the author of an ebook about green building and writes for construction tech and green building websites. She lives in Salem, Oregon with her husband and four cats.

Related Articles

GAF Employee on the job
In Your Community

How GAF's Co-Op Program Makes a Difference in Students' Lives

As part of its effort to build resilient communities, GAF provides students across the country with opportunities to gain work experience and hands-on training. The GAF co-op program offers participants autonomy and leadership in project management, engineering design, budgeting, project installation, and more.Over the years, the GAF co-op recruiting program has helped students advance academically, grow professionally, and earn competitively while working full time with North America's largest roofing and waterproofing manufacturer.How the GAF Co-Op Program WorksThe program gives students high-impact, hands-on experience in the manufacturing sector. They perform meaningful work alongside supportive GAF mentors and senior leadership while earning a competitive wage. Participants can also receive credits from their university, which they can apply to their coursework.Differences between a Co-op and an InternshipInternships and co-ops have a few notable differences. At GAF, the main difference is the length of time. Internships at GAF usually last 10 weeks, but the co-op program is six months. While internship programs often allow students to stay enrolled in school and complete coursework as they gain professional training, co-op participants must take a semester off to gain full-time work experience.Not all companies pay internship participants for their work. However, at GAF, both interns and co-op students are paid competitive hourly wages. GAF also offers financial relocation assistance for qualifying co-op program candidates.Finally, participants in the GAF programs are there to learn real skills that will help them advance their future careers. GAF interns and co-op students are given the same responsibilities, and chances to collaborate on major projects, as full-time employees.Recent GAF Co-Op Success StoriesMin U, a mechanical engineering student at the University of Maryland, says he "fell in love with manufacturing" thanks to his placement on an engineering project. The experience gave him a firsthand account of the role engineering plays in manufacturing safety, profit, and operations. This ultimately led him to shift his career goals from construction management to manufacturing engineering.When Dante Stellar, an industrial engineering student at Virginia Tech, met GAF representatives at a career fair, he says he didn't expect to become a self-proclaimed "nerd for shingles" and develop a passion for manufacturing. However, that's exactly what happened. And that newfound passion paid off when Dante won Student of the Year from Virginia Tech's Cooperative Education and Internship Program. Dante notes he's now eager to return to GAF and aspires to become a manufacturing leader in the world of shingles.Michael Hesseltine, an electrical engineering student at Texas A&M University, chanced upon a GAF co-op recruiting listing online. After a series of interviews, he landed a project engineering co-op in Ennis, Texas. Working with the Ennis team on major projects solidified his manufacturing engineer career goals.Co-Op Students Complete Meaningful WorkStudents in the GAF co-op program are involved in meaningful projects and get to see their work's impact on day-to-day operations.During his time in Ennis, Michael designed a baler that compacts fiberglass scrap, reducing site disposal trips and costs. He also oversaw renovations of the site's maintenance mechanical break room from start to finish. He notes that his favorite contribution was helping design the electrical system for a dewatering press.In Baltimore, Min's core project was ensuring site compliance with state regulations for discharging stormwater runoff. Min managed all the project contractors and budget with his manager's and mentor's support. Throughout his time there, Min was exposed to Lean methodologies, 5S, risk mitigation, insurance compliance, cost control, and procedure standardization. He gained an overall understanding of manufacturing equipment and business.At the Tampa plant, Dante worked on a rock pad storage expansion project and installed a starwheel machine guarding the manufacturing line, among other important projects. According to Dante, the defining moment of his co-op experience was his granule silo refurbishment project, which involved replacing eight silos, including floor plates and support beams.Dante explains the trust and opportunities his mentors provided were key to his success. "At GAF, I was given the chance to interact with contractors, and immerse myself in the plant, which accelerated my learning," he says.Co-Op Students Build Professional RelationshipsThrough "lunch and learn" sessions, leadership speaker series, meetings with senior leadership, and mentorship, co-op students build long-term professional relationships.Dante was given the chance to showcase the coordination and safety efforts involved in his granule silo project to the GAF executive leadership team in Parsippany, New Jersey.For Min, getting the right feedback to grow meant having the right relationships. He notes the mentorship from his manager Alex Smith and engineering manager Mike Kloda was key to his progression. As advice to future co-op participants, he explains that "everyone is here to help... but it's up to you to drive that forward."Meanwhile, the autonomy and leadership opportunities program leaders gave Michael allowed him to grow technically and professionally. "I was often the go-to person for projects, managing contractors and ensuring everything was on track," he says.Joining an Industry Filled with OpportunityThe GAF co-op program helped Min, Michael, and Dante start and solidify their careers in manufacturing engineering. Following their experience, each student was excited and motivated by the autonomy, responsibility, and growth opportunities they were given. In fact, Min has since accepted a full-time role as a project engineer at the GAF plant in Baltimore. His expected start date is July 7, 2025.GAF is committed to fostering diversity, equity, and inclusion throughout the organization. It believes a talented and diverse organization can drive innovation, growth, and transformation more effectively. To further bolster inclusivity, GAF offers academic and merit scholarships, partners with the Thurgood Marshall College Fund to recruit from the nation's most diverse talent at Historically Black Colleges and Universities and Predominantly Black Institutions, and reaches out to candidates at career fairs nationwide.Bright and motivated minds who want to explore manufacturing have plenty of opportunities. From shingles to solar to environmental impact, GAF offers many exciting career paths.Are you ready to do work that matters and be empowered to explore a leadership role? Discover the co-ops, internships, and job opportunities available at GAF.

By Authors Annie Crawford

October 11, 2024

Installation of ISO Board and TPO on a Roof
Building Science

Roof Insulation: A Positive Investment to Reduce Total Carbon

Have you ever thought about building products reducing the carbon dioxide emissions caused by your building? When considered over their useful life, materials like insulation decrease total carbon emissions thanks to their performance benefits. Read on for an explanation of how this can work in your designs.What is Total Carbon?Total carbon captures the idea that the carbon impacts of buildings should be considered holistically across the building's entire life span and sometimes beyond. (In this context, "carbon" is shorthand for carbon dioxide (CO2) emissions.) Put simply, total carbon is calculated by adding a building's embodied carbon to its operational carbon.Total Carbon = Embodied Carbon + Operational CarbonWhat is Embodied Carbon?Embodied carbon is comprised of CO2 emissions from everything other than the operations phase of the building. This includes raw material supply, manufacturing, construction/installation, maintenance and repair, deconstruction/demolition, waste processing/disposal of building materials, and transport between each stage and the next. These embodied carbon phases are indicated by the gray CO2 clouds over the different sections of the life cycle in the image below.We often focus on "cradle-to-gate" embodied carbon because this is the simplest to calculate. "Cradle-to-gate" is the sum of carbon emissions from the energy consumed directly or indirectly to produce the construction materials used in a building. The "cradle to gate" approach neglects the remainder of the embodied carbon captured in the broader "cradle to grave" assessment, a more comprehensive view of a building's embodied carbon footprint.What is Operational Carbon?Operational carbon, on the other hand, is generated by energy used during a building's occupancy stage, by heating, cooling, and lighting systems; equipment and appliances; and other critical functions. This is the red CO2 cloud in the life-cycle graphic. It is larger than the gray CO2 clouds because, in most buildings, operational carbon is the largest contributor to total carbon.What is Carbon Dioxide Equivalent (CO2e)?Often, you will see the term CO2e used. According to the US Environmental Protection Agency (EPA), "CO2e is simply the combination of the pollutants that contribute to climate change adjusted using their global warming potential." In other words, it is a way to translate the effect of pollutants (e.g. methane, nitrous oxide) into the equivalent volume of CO2 that would have the same effect on the atmosphere.Today and the FutureToday, carbon from building operations (72%) is a much larger challenge than that from construction materials' embodied carbon (28%) (Architecture 2030, 2019). Projections into 2050 anticipate the operations/embodied carbon split will be closer to 50/50, but this hinges on building designs and renovations between now and 2050 making progress on improving building operations.Why Insulation?Insulation, and specifically continuous insulation on low-slope roofs, is especially relevant to the carbon discussion because, according to the Embodied Carbon 101: Envelope presentation by the Boston Society for Architecture: Insulation occupies the unique position at the intersection of embodied and operational carbon emissions for a building. Insulation is the only building material that directly offsets operational emissions. It can be said to pay back its embodied carbon debt with avoided emissions during the building's lifetime.A Thought Experiment on Reducing Total CarbonTo make progress on reducing the total carbon impact of buildings, it is best to start with the largest piece of today's pie, operational carbon. Within the range of choices made during building design and construction, not all selections have the same effect on operational carbon.When making decisions about carbon and energy reduction strategies, think about the problem as an "investment" rather than a "discretionary expense." Discretionary expenses are easier to reduce or eliminate by simply consuming less. In the example below, imagine you are flying to visit your client's building. Consider this a "discretionary expense." The input on the far left is a given number of kilograms of carbon dioxide equivalent (CO2e) generated for the flight, from the manufacturing of the airplane, to the fuel it burns, to its maintenance. The output is the flight itself, which creates CO2 emissions, but no durable good. In this case, the only CO2 reduction strategy you can make is to make fewer or shorter flights, perhaps by consolidating visits, employing a local designer of record, or visiting the building virtually whenever possible. Now consider the wallpaper you might specify for your client's building. It involves a discretionary expenditure of CO2e, in this case, used to produce a durable good. However, this durable good is a product without use-phase benefits. In other words, it cannot help to save energy during the operational phase of the building. It has other aesthetic and durability benefits, but no operational benefits to offset the CO2 emissions generated to create it. Your choices here are expanded over the previous example of an airplane flight. You can limit CO2 by choosing a product with a long useful life. You can also apply the three Rs: reduce the quantity of new product used, reuse existing material when possible, and recycle product scraps at installation and the rest at the end of its lifespan. In the final step in our thought experiment, consider the insulation in your client's building. As before, we must generate a certain amount of CO2e to create a durable good. In this case, it's one with use-phase benefits. Insulation can reduce operational energy by reducing heat flow through the building enclosure, reducing the need to burn fuel or use electricity to heat and cool the building. The good news is that, in addition to the other strategies considered for the flight and the wallpaper, here you can also maximize operational carbon savings to offset the initial embodied carbon input. And, unlike the discretionary nature of some flights and the often optional decision to use furnishings like wallpaper, heating and cooling are necessary for the functioning of almost all occupied buildings.Based on this example, you can consider building products with operational benefits, like insulation, as an "investment." It is appropriate to look at improving the building enclosure and understanding what the return on the investment is from a carbon perspective. As the comparison above demonstrates, if you have a limited supply of carbon to "invest", putting it into more roof insulation is a very smart move compared to "spending" it on a discretionary flight or on a product without use-phase carbon benefits, such as wallpaper.This means we should be careful not to measure products like insulation that save CO2e in the building use-phase savings only by their embodied carbon use, but by their total carbon profile. So, how do we calculate this?Putting It to the TestWe were curious to know just how much operational carbon roof insulation could save relative to the initial investment of embodied carbon required to include it in a building. To understand this, we modeled the US Department of Energy's (DOE) Standalone Retail Prototype Building located in Climate Zone 4A to comply with ASHRAE 90.1-2019 energy requirements. We took the insulation product's embodied energy and carbon data from the Polyisocyanurate Insulation Manufacturers Association's (PIMA) industry-wide environmental product declaration (EPD).To significantly reduce operational carbon, the largest carbon challenge facing buildings today, the returns on the investment of our building design strategies need to be consistent over time. This is where passive design strategies like building enclosure improvements really shine. They have much longer service lives than, for example, finish materials, leading to sustained returns.Specifically, we looked here at how our example building's roof insulation impacted both embodied and operational carbon and energy use. To do this, we calculated the cumulative carbon savings over the 75-year life of our model building. In our example, we assumed R-30 insulation installed at the outset, increased every 20 years by R-10, when the roof membrane is periodically replaced.In our analysis, the embodied CO2e associated with installing R-30 (shown by the brown curve in years -1 to 1), the embodied carbon of the additional R-10 of insulation added every 20 years (too small to show up in the graph), and the embodied carbon represented by end-of-life disposal (also too small to show up) are all taken into account. About five months after the building becomes operational, the embodied carbon investment of the roof insulation is dwarfed by the operational savings it provides. The initial and supplemental roof insulation ultimately saves a net of 705 metric tons of carbon over the life of the building.If you want to see more examples like the one above, check out PIMA's study, conducted by the consulting firm ICF. The research group looked at several DOE building prototypes across a range of climate zones, calculating how much carbon, energy, and money can be saved when roof insulation is upgraded from an existing baseline to current code compliance. Their results can be found here. Justin Koscher of PIMA also highlighted these savings, conveniently sorted by climate zone and building type, here.Support for Carbon Investment DecisionsSo how can you make sure you address both operational and embodied carbon when making "carbon investment" decisions? We've prepared a handy chart to help.First, when looking at lower-embodied-carbon substitutions for higher-embodied-carbon building materials or systems (moving from the upper-left red quadrant to the lower-left yellow quadrant in the chart), ensure that the alternatives you are considering have equivalent performance attributes in terms of resilience and longevity. If an alternative material or system has lower initial embodied carbon, but doesn't perform as well or last as long as the specified product, then it may not be a good carbon investment. Another consideration here is whether or not the embodied carbon of the alternative is released as emissions (i.e. as part of its raw material supply or manufacturing, or "cradle to gate" stages), or if it remains in the product throughout its useful life. In other words, can the alternative item be considered a carbon sink? If so, using it may be a good strategy.Next, determine if the alternative product or system can provide operational carbon savings, even if it has high embodied energy (upper-right yellow quadrant). If the alternative has positive operational carbon impacts over a long period, don't sacrifice operational carbon savings for the sake of avoiding an initial embodied product carbon investment when justified for strategic reasons.Last, if a product has high operational carbon savings and relatively low embodied carbon (lower-right green quadrant), include more of this product in your designs. The polyiso roof insulation in our example above fits into this category. You can utilize these carbon savings to offset the carbon use in other areas of the design, like aesthetic finishes, where the decision to use the product may be discretionary but desired.When designing buildings, we need to consider the whole picture, looking at building products' embodied carbon as a potential investment yielding improved operational and performance outcomes. Our design choices and product selection can have a significant impact on total carbon targets for the buildings we envision, build, and operate.Click these links to learn more about GAF's and Siplast's insulation solutions. Please also visit our design professional and architect resources page for guide specifications, details, innovative green building materials, continuing education, and expert guidance.We presented the findings in this blog in a presentation called "Carbon and Energy Impacts of Roof Insulation: The Whole[-Life] Story" given at the BEST6 Conference on March 19, 2024 in Austin, Texas.References:Architecture 2030. (2019). New Buildings: Embodied Carbon. https://web.archive.org/web/20190801031738/https://architecture2030.org/new-buildings-embodied/ Carbon Leadership Forum. (2023, April 2). 1 - Embodied Carbon 101. https://carbonleadershipforum.org/embodied-carbon-101/

By Authors Elizabeth Grant

September 18, 2024

GAF Burgaw VIBE Group in front of a Habitat for Humanity build
In Your Community

How GAF's VIBE ERG Supports Veteran Employees and Their Local Communities

A group of local GAF employees in Burgaw, North Carolina, is making a difference for veterans and the community as a whole. In 2024 alone, Veteran Involvement Brings Excellence (VIBE) has undertaken several initiatives to give back to Burgaw as well as all who live and work there.Bill Price, GAF production supervisor II at the Burgaw manufacturing plant, is the champion for the group. He recently sat down to discuss VIBE's latest projects and share insight into its motivations.What Is the VIBE ERG at GAF?VIBE is an employee resource group (ERG) available for all GAF employees. It focuses on the needs of veterans who work at GAF, provides a place for employees to share their experiences, and helps foster opportunities for them to give back to their communities.Each GAF plant has a VIBE group and facility leader that organizes the team. GAF leadership supports each group and its community efforts.The VIBE ERG's mission is to create a supportive environment for veterans and active duty members from all military branches. The group's core values are integrity, duty, honor, and respect. VIBE provides personal support for members and helps them manage the realities of being a veteran, such as applying for benefits.Each VIBE group can work on or be involved in whatever projects they wish. While their primary focus is to support veterans, they also strive to give back to the local communities they live and work in.VIBE Projects in BurgawThe VIBE ERG at the Burgaw plant meets regularly to discuss the activities they want to get involved in. This year, the group has participated in several projects:17 GAF-employed veterans volunteered for the second annual Habitat for Humanity veteran's build, which GAF donated roofing materials for.Team members participated in a food and clothing drive for a local women's shelter.A local veteran service officer visited the plant to help workers learn about—and gain access to—benefits and resources.In honor of Memorial Day, VIBE provided an opportunity for volunteers to place flags at veterans' tombstones at Coastal Carolina State Veterans Cemetery and Wilmington National Cemetery.That's not all the group has planned for. Future initiatives include hosting Toys for Tots at the plant, adopting a highway in honor of veterans, representing GAF at a booth for the Burgaw Blueberry Festival, and continuing to support local veterans in need.How VIBE Impacts GAF and the CommunityThe Burgaw facility, which employs about 247 people, has one of the largest veteran groups within GAF, totaling 28 members. The facility manufactures ventilation products, such as roof vents, foundation vents, turbines, and heating and cooling ductwork."The group has brought the veterans at the plant together to work toward a common goal and also given everyone the comradery they were accustomed to from when they were in the service," Price says. "I think this has had an impact not only on the employees involved but also on the plant as a whole. All of us involved enjoy being part of the team and giving back to those in need."Price notes that each project the group has been a part of has been well received. "We received many thanks from the families that were receiving assistance from the Habitat build and also from the staff at the local women's shelter during the food and clothing drive," he says. "I have no doubt that as we continue to be involved with more events within the community, it will only get better."Giving Back While Looking AheadGAF believes in giving back to its employees and the communities they work in. VIBE is just one of seven GAF ERGs making a difference in team members' lives and those most important to them.Curious to learn more about the opportunities and culture at GAF? Visit our GAF Careers page.

By Authors Dawn Killough

August 09, 2024

Don't miss another GAF RoofViews post!

Subscribe now