Bundled worker in cold storage facility

Cold Storage

The right roofing partner can help you achieve the most vital goals of your cold storage facility.

Why choose GAF for your cold storage facility?

protect image

Protect Stored Goods

Proper roof design, including selection of reflective membranes and insulation, can help maintain desired interior temperatures.
safeguard

Safeguard Operations

Proper roof design and installation can help prevent unsafe interior conditions such as condensation, which can cause ice to form on the floor.
reduce

Reduce Energy Use

The proper roofing attachment method can help save energy over the lifetime of the roof system.*
*Energy savings are not guaranteed and the amount of savings may vary based on climate zone, utility rates, radiative properties of roofing products, insulation levels, HVAC equipment efficiency and other factors.

Design a GAF system to fit your needs

Work with GAF designers, using GAF products, to design a system that maintains cold interior temperatures while saving energy.* GAF cold storage roof systems incorporate key components, including insulation, cover board, edge metal, and membrane.

Cold storage assembly

Female GAF employee explaining cold storage roof systems

Intro to Cold Storage Roof Systems

Cold storage buildings require unique construction assemblies. Learn more about the primary control layers, their continuity, and their role in reducing the risk of condensation.

Cold Storage Details, Specifications and Resources

Cold Storage Design Guide

Download

TPO Specification

Download

PVC Specification

Download

Cold Storage Details

Download All

Cold storage details

201A-CS Coated Metal Roof Edge Detail:       Download PDF        Download CAD

201C-CS Coated Metal Roof Edge at IWP Detail:       Download PDF        Download CAD

202C-CS Metal Gravel Stop with Hemmed Edge Detail:       Download PDF        Download CAD

203D-CS Metal Roof Edge with Cover Tape at IMP Detail:       Download PDF        Download CAD

205-CS Snap-on Fascia Detail:       Download PDF        Download CAD

232E-CS EZ Fascia Detail:       Download PDF        Download CAD

237-CS Preparation of IMP Walls for Edge Termination Detail:       Download PDF        Download CAD

401D-CS Field Fabricated Expansion Joint Detail - Flat Type:       Download PDF        Download CAD

403D-CS Field Fabricated Wall Expansion Joint Detail - Flat Type:       Download PDF        Download CAD

503C-CS Termination at RTU Detail with Welded Lap:       Download PDF        Download CAD

506B-CS Pre-molded Vent Boot Flashing Detail - Ambient Interior Conditions:       Download PDF        Download CAD

506D-CS Insulated Pipe Penetration Detail with Flashing to Pipe Insulation:       Download PDF        Download CAD

511C-CS Deck Mounted Equipment Support Flashing:       Download PDF        Download CAD

301B-CS Wall Flashing with Surface Mounted Counterflashing Detail:       Download PDF        Download CAD

303B-CS IMP with Coping Cap Detail:       Download PDF        Download CAD

303C-CS Insulated Metal Panel with Coping Cap & SA Vapor Retarder Detail:       Download PDF        Download CAD

309-CS Base Wall Termination with SA Vapor Retarder Detail:       Download PDF        Download CAD

350-CS Air Seal Detail at Steel Deck to Wall Interface:       Download PDF        Download CAD

311A-CS Coated Metal Wall Scupper:       Download PDF        Download CAD

130A-CS Cold to Warm Transition Tie-in Detail:       Download PDF        Download CAD

130B-CS Cold to Warm Transition Tie-in w/IMP above Roof Deck Detail:       Download PDF        Download CAD

130C-CS Cold to Warm Transition Tie-in w/wall below Roof Deck Detail:       Download PDF        Download CAD

130D-CS Cold to Warm Transition Tie-in w/IMP above Roof Deck Detail:       Download PDF        Download CAD

GAF Cold Storage solutions are helping organizations protect what matters most to their businesses, across the U.S.

Contact us for help and more information.

Send email
Hands typing on laptop

Join GAF for upcoming events and webinars

Have a real interactive discussion with real live people. Attendees can earn 1.0 AIS HSW or 1.0 IBEC CEH credits. Topics include Cold Storage Roof Design, Wind Design in Low Slope Roofing, and much more. Can’t join us live? Watch our on-demand recordings from past webinars.
Male and female roofing science team members in warehouse

Our Building & Roofing Science Team gives you the design advantage

Our Building & Roofing Science Team is here to provide you the insights you need — from roofing solutions and technical design insights to white papers and CEU content — and is available to discuss how GAF can help you address your specific cold storage challenges.

Related Blog Post Row

Installation of ISO Board and TPO on a Roof
Building Science

Roof Insulation: A Positive Investment to Reduce Total Carbon

Have you ever thought about building products reducing the carbon dioxide emissions caused by your building? When considered over their useful life, materials like insulation decrease total carbon emissions thanks to their performance benefits. Read on for an explanation of how this can work in your designs.What is Total Carbon?Total carbon captures the idea that the carbon impacts of buildings should be considered holistically across the building's entire life span and sometimes beyond. (In this context, "carbon" is shorthand for carbon dioxide (CO2) emissions.) Put simply, total carbon is calculated by adding a building's embodied carbon to its operational carbon.Total Carbon = Embodied Carbon + Operational CarbonWhat is Embodied Carbon?Embodied carbon is comprised of CO2 emissions from everything other than the operations phase of the building. This includes raw material supply, manufacturing, construction/installation, maintenance and repair, deconstruction/demolition, waste processing/disposal of building materials, and transport between each stage and the next. These embodied carbon phases are indicated by the gray CO2 clouds over the different sections of the life cycle in the image below.We often focus on "cradle-to-gate" embodied carbon because this is the simplest to calculate. "Cradle-to-gate" is the sum of carbon emissions from the energy consumed directly or indirectly to produce the construction materials used in a building. The "cradle to gate" approach neglects the remainder of the embodied carbon captured in the broader "cradle to grave" assessment, a more comprehensive view of a building's embodied carbon footprint.What is Operational Carbon?Operational carbon, on the other hand, is generated by energy used during a building's occupancy stage, by heating, cooling, and lighting systems; equipment and appliances; and other critical functions. This is the red CO2 cloud in the life-cycle graphic. It is larger than the gray CO2 clouds because, in most buildings, operational carbon is the largest contributor to total carbon.What is Carbon Dioxide Equivalent (CO2e)?Often, you will see the term CO2e used. According to the US Environmental Protection Agency (EPA), "CO2e is simply the combination of the pollutants that contribute to climate change adjusted using their global warming potential." In other words, it is a way to translate the effect of pollutants (e.g. methane, nitrous oxide) into the equivalent volume of CO2 that would have the same effect on the atmosphere.Today and the FutureToday, carbon from building operations (72%) is a much larger challenge than that from construction materials' embodied carbon (28%) (Architecture 2030, 2019). Projections into 2050 anticipate the operations/embodied carbon split will be closer to 50/50, but this hinges on building designs and renovations between now and 2050 making progress on improving building operations.Why Insulation?Insulation, and specifically continuous insulation on low-slope roofs, is especially relevant to the carbon discussion because, according to the Embodied Carbon 101: Envelope presentation by the Boston Society for Architecture: Insulation occupies the unique position at the intersection of embodied and operational carbon emissions for a building. Insulation is the only building material that directly offsets operational emissions. It can be said to pay back its embodied carbon debt with avoided emissions during the building's lifetime.A Thought Experiment on Reducing Total CarbonTo make progress on reducing the total carbon impact of buildings, it is best to start with the largest piece of today's pie, operational carbon. Within the range of choices made during building design and construction, not all selections have the same effect on operational carbon.When making decisions about carbon and energy reduction strategies, think about the problem as an "investment" rather than a "discretionary expense." Discretionary expenses are easier to reduce or eliminate by simply consuming less. In the example below, imagine you are flying to visit your client's building. Consider this a "discretionary expense." The input on the far left is a given number of kilograms of carbon dioxide equivalent (CO2e) generated for the flight, from the manufacturing of the airplane, to the fuel it burns, to its maintenance. The output is the flight itself, which creates CO2 emissions, but no durable good. In this case, the only CO2 reduction strategy you can make is to make fewer or shorter flights, perhaps by consolidating visits, employing a local designer of record, or visiting the building virtually whenever possible. Now consider the wallpaper you might specify for your client's building. It involves a discretionary expenditure of CO2e, in this case, used to produce a durable good. However, this durable good is a product without use-phase benefits. In other words, it cannot help to save energy during the operational phase of the building. It has other aesthetic and durability benefits, but no operational benefits to offset the CO2 emissions generated to create it. Your choices here are expanded over the previous example of an airplane flight. You can limit CO2 by choosing a product with a long useful life. You can also apply the three Rs: reduce the quantity of new product used, reuse existing material when possible, and recycle product scraps at installation and the rest at the end of its lifespan. In the final step in our thought experiment, consider the insulation in your client's building. As before, we must generate a certain amount of CO2e to create a durable good. In this case, it's one with use-phase benefits. Insulation can reduce operational energy by reducing heat flow through the building enclosure, reducing the need to burn fuel or use electricity to heat and cool the building. The good news is that, in addition to the other strategies considered for the flight and the wallpaper, here you can also maximize operational carbon savings to offset the initial embodied carbon input. And, unlike the discretionary nature of some flights and the often optional decision to use furnishings like wallpaper, heating and cooling are necessary for the functioning of almost all occupied buildings.Based on this example, you can consider building products with operational benefits, like insulation, as an "investment." It is appropriate to look at improving the building enclosure and understanding what the return on the investment is from a carbon perspective. As the comparison above demonstrates, if you have a limited supply of carbon to "invest", putting it into more roof insulation is a very smart move compared to "spending" it on a discretionary flight or on a product without use-phase carbon benefits, such as wallpaper.This means we should be careful not to measure products like insulation that save CO2e in the building use-phase savings only by their embodied carbon use, but by their total carbon profile. So, how do we calculate this?Putting It to the TestWe were curious to know just how much operational carbon roof insulation could save relative to the initial investment of embodied carbon required to include it in a building. To understand this, we modeled the US Department of Energy's (DOE) Standalone Retail Prototype Building located in Climate Zone 4A to comply with ASHRAE 90.1-2019 energy requirements. We took the insulation product's embodied energy and carbon data from the Polyisocyanurate Insulation Manufacturers Association's (PIMA) industry-wide environmental product declaration (EPD).To significantly reduce operational carbon, the largest carbon challenge facing buildings today, the returns on the investment of our building design strategies need to be consistent over time. This is where passive design strategies like building enclosure improvements really shine. They have much longer service lives than, for example, finish materials, leading to sustained returns.Specifically, we looked here at how our example building's roof insulation impacted both embodied and operational carbon and energy use. To do this, we calculated the cumulative carbon savings over the 75-year life of our model building. In our example, we assumed R-30 insulation installed at the outset, increased every 20 years by R-10, when the roof membrane is periodically replaced.In our analysis, the embodied CO2e associated with installing R-30 (shown by the brown curve in years -1 to 1), the embodied carbon of the additional R-10 of insulation added every 20 years (too small to show up in the graph), and the embodied carbon represented by end-of-life disposal (also too small to show up) are all taken into account. About five months after the building becomes operational, the embodied carbon investment of the roof insulation is dwarfed by the operational savings it provides. The initial and supplemental roof insulation ultimately saves a net of 705 metric tons of carbon over the life of the building.If you want to see more examples like the one above, check out PIMA's study, conducted by the consulting firm ICF. The research group looked at several DOE building prototypes across a range of climate zones, calculating how much carbon, energy, and money can be saved when roof insulation is upgraded from an existing baseline to current code compliance. Their results can be found here. Justin Koscher of PIMA also highlighted these savings, conveniently sorted by climate zone and building type, here.Support for Carbon Investment DecisionsSo how can you make sure you address both operational and embodied carbon when making "carbon investment" decisions? We've prepared a handy chart to help.First, when looking at lower-embodied-carbon substitutions for higher-embodied-carbon building materials or systems (moving from the upper-left red quadrant to the lower-left yellow quadrant in the chart), ensure that the alternatives you are considering have equivalent performance attributes in terms of resilience and longevity. If an alternative material or system has lower initial embodied carbon, but doesn't perform as well or last as long as the specified product, then it may not be a good carbon investment. Another consideration here is whether or not the embodied carbon of the alternative is released as emissions (i.e. as part of its raw material supply or manufacturing, or "cradle to gate" stages), or if it remains in the product throughout its useful life. In other words, can the alternative item be considered a carbon sink? If so, using it may be a good strategy.Next, determine if the alternative product or system can provide operational carbon savings, even if it has high embodied energy (upper-right yellow quadrant). If the alternative has positive operational carbon impacts over a long period, don't sacrifice operational carbon savings for the sake of avoiding an initial embodied product carbon investment when justified for strategic reasons.Last, if a product has high operational carbon savings and relatively low embodied carbon (lower-right green quadrant), include more of this product in your designs. The polyiso roof insulation in our example above fits into this category. You can utilize these carbon savings to offset the carbon use in other areas of the design, like aesthetic finishes, where the decision to use the product may be discretionary but desired.When designing buildings, we need to consider the whole picture, looking at building products' embodied carbon as a potential investment yielding improved operational and performance outcomes. Our design choices and product selection can have a significant impact on total carbon targets for the buildings we envision, build, and operate.Click these links to learn more about GAF's and Siplast's insulation solutions. Please also visit our design professional and architect resources page for guide specifications, details, innovative green building materials, continuing education, and expert guidance.We presented the findings in this blog in a presentation called "Carbon and Energy Impacts of Roof Insulation: The Whole[-Life] Story" given at the BEST6 Conference on March 19, 2024 in Austin, Texas.References:Architecture 2030. (2019). New Buildings: Embodied Carbon. https://web.archive.org/web/20190801031738/https://architecture2030.org/new-buildings-embodied/ Carbon Leadership Forum. (2023, April 2). 1 - Embodied Carbon 101. https://carbonleadershipforum.org/embodied-carbon-101/

By Authors Elizabeth Grant

September 13, 2024

GAF Shafter Plant
Building Science

GAF Scaling Environmental Product Declarations—Publishes 21 EPDs

At GAF, we're serious about our sustainability promise: to protect what matters most, including our people, our communities, and our planet. We recently published 21 new GAF product-specific Environmental Product Declarations (EPDs) as one way we're delivering on that promise.EPDs are critical to improving green building solutions. These standardized and third-party-verified documents outline the environmental impacts associated with a building product's life cycle—from raw material extraction to end-of-life disposal or reuse. Through the EPD creation process, we have been advancing on our sustainability goals, demonstrating our commitment to the environment and our customers, and increasing product sustainability in the roofing industry.Here's a look at our most recent progress and what's expected to come.GAF Sustainability GoalsThe 21 new EPDs are an exciting milestone toward our GAF 2030 Planet Goals, which have four focus areas: increase product transparency, reduce carbon emissions, drive circularity in the roofing sector, and divert operational waste. By 2030, we plan to publish EPDs for our entire commercial and residential core product portfolio. As we've scaled the GAF EPD creation process, through extensive life cycle assessments across our portfolio, we better understand the environmental impact of each stage in our products' life cycles. This opens up internal and external sustainability opportunities as we learn from, and analyze, our life cycle assessment results.Evolving to Product-Specific Environmental Product DeclarationsRoofing has long relied on industry-wide EPDs created from aggregate product data. As a result, our architecture, engineering, and construction (AEC) community members have had fewer opportunities to make informed sustainability choices around roofing materials.According to several sources, the built environment accounts for 39% of global energy-related carbon emissions worldwide. Collectively, we as a roofing industry could help reduce this number by increasing our transparency documentation. With more product-specific Environmental Product Declarations, companies and customers can make more informed product sustainability decisions.And although GAF currently has the highest overall number of transparency documents for roofing materials in the industry, we know we also have an opportunity to grow.GAF Uses Life Cycle Assessments to ImproveWe review product Life Cycle Assessments (LCAs) to understand the environmental impact of each product's production stages, from raw material extraction to end-of-life. Then, we can use that information to identify areas of improvement and make informed decisions to reduce a product's environmental impact, resulting in a reduction in embodied carbon. The knowledge we gain from our LCAs creates the potential for product improvements and new innovations to help further our 2030 Planet Goals.Looking Toward 2030 and BeyondWe're working hard to continue leading the industry with transparency documentation such as EPDs, Health Product Declarations, and Declare Labels. But we're not stopping there.We're fostering collaboration in our broader building, construction, and design space to help reduce the built environment's total carbon emissions. At GAF, sustainability isn't checking a box. We believe in and champion protecting our homes and our planet. By changing how we do business, we hope to improve how builders can build and, ultimately, how our world lives.Empowering the AEC CommunityTransparency and product sustainability documentation help us all build a better world. We're committed to empowering designers, builders, architects, and engineers by providing information about the lifecycle and environmental impact of GAF products whenever possible.Explore some of our most recent EPDs below.Polyiso InsulationEnergyGuard™ Barrier. Polyiso InsulationEnergyGuard™ HD and HD Barrier Polyiso Cover BoardEnergyGuard™ HD Plus Polyiso Cover BoardEnergyGuard™ NH Barrier Polyiso InsulationEnergyGuard™ NH HD Plus Polyiso Cover BoardEnergyGuard™ NH HD Polyiso Cover BoardEnergyGuard™ NH Polyiso InsulationEnergyGuard™ NH Ultra Polyiso InsulationEnergyGuard™ NH Ultra Tapered Polyiso InsulationEnergyGuard™ Polyiso InsulationEnergyGuard™ Ultra Polyiso InsulationUltra HD Composite InsulationTPO Single-Ply MembraneEverGuard® TPO Extreme Fleece-backEverGuard® TPO ExtremeEverGuard® TPOEverGuard® TPO Fleece-backEverGuard® SA TPO Self-Adhered Roof MembranePVCEverGuard® PVCEverGuard® PVC Fleece-back Roof CoatingsHydroStop® System GAF Acrylic Top CoatLooking to explore more sustainable design solutions? You can learn how GAF is investing in our people, our planet, and progress for a more sustainable future, here.

By Authors Aly Perez

August 13, 2024

An aerial shot of the student housing building on the Texas A&M campus.
Building Science

Are Hybrid Roof Assemblies Worth the Hype?

How can roofing assemblies contribute to a building's energy efficiency, resiliency, and sustainability goals? Intentional material selection will increase the robustness of the assembly including the ability to weather a storm, adequate insulation will assist in maintaining interior temperatures and help save energy, and more durable materials may last longer, resulting in less frequent replacements. Hybrid roof assemblies are the latest roofing trend aimed at contributing to these goals, but is all the hype worth it?What is a hybrid roof assembly?A hybrid roof assembly is where two roofing membranes, composed of different technologies, are used in one roof system. One such assembly is where the base layers consist of asphaltic modified bitumen, and the cap layer is a reflective single-ply membrane such as a fleece-back TPO or PVC. Each roof membrane is chosen for their strengths, and together, the system combines the best of both membranes. A hybrid system such as this has increased robustness, with effectively two plies or more of membrane.Asphaltic membranes, used as the first layer, provide redundancy and protection against punctures as it adds overall thickness to the system. Asphaltic systems, while having decades of successful roof installations, without a granular surface may be vulnerable to UV exposure, have minimal resistance to ponding water or certain chemical contaminants, and are generally darker in color options as compared to single ply surfacing colors choices. The addition of a single-ply white reflective membrane will offset these properties, including decreasing the roof surface temperatures and potentially reducing the building's heat island effect as they are commonly white or light in color. PVC and KEE membranes may also provide protection where exposure to chemicals is a concern and generally hold up well in ponding water conditions. The combination of an asphaltic base below a single-ply system increases overall system thickness and provides protection against punctures, which are primary concerns with single-ply applications.Pictured Above: EverGuard® TPO 60‑mil Fleece‑Back MembraneOlyBond 500™ AdhesiveRUBEROID® Mop Smooth MembraneMillennium Hurricane Force ® 1-Part Membrane AdhesiveDensDeck® Roof BoardMillennium Hurricane Force ® 1-Part Membrane AdhesiveEnergyGuard™ Polyiso InsulationMillennium Hurricane Force ® 1-Part Membrane AdhesiveConcrete DeckPictured Above: EverGuard® TPO 60‑mil Fleece‑Back MembraneGAF LRF Adhesive XF (Splatter)RUBEROID® HW Smooth MembraneDrill‑Tec™ Fasteners & PlatesDensDeck® Prime Gypsum BoardEnergyGuard™ Polyiso InsulationEnergyGuard™ Polyiso InsulationGAF SA Vapor Retarder XLMetal DeckWhere are hybrid roof assemblies typically utilized?Hybrid roof assemblies are a common choice for K-12 & higher education buildings, data centers, and hospitals due to their strong protection against leaks and multi-ply system redundancy. The redundancy of the two membrane layers provides a secondary protection against leaks if the single-ply membrane is breached. Additionally, the reflective single-ply membrane can result in lower rooftop temperatures. The addition of a reflective membrane over a dark-colored asphaltic membrane will greatly increase the Solar Reflectance Index (SRI) of the roof surface. SRI is an indicator of the ability of a surface to return solar energy into the atmosphere. In general, roof material surfaces with a higher SRI will be cooler than a surface with a lower SRI under the same solar energy exposure. A lower roof surface temperature can result in less heat being absorbed into the building interior during the summer months.Is a hybrid only for new construction?The advantage of a hybrid roof assembly is significant in recover scenarios where there is an existing-modified bitumen or built-up roof that is in overall fair condition and with little underlying moisture present. A single ply membrane can be installed on top of the existing roof system without an expensive and disruptive tear-off of the existing assembly. The addition of the single-ply membrane adds reflectivity to the existing darker colored membrane and increases the service life of the roof assembly due to the additional layer of UV protection. Additionally, the single-ply membrane can be installed with low VOC options that can have minimum odor and noise disturbance if construction is taking place while the building is occupied.Is the hybrid assembly hype worth it?Absolutely! The possibility to combine the best aspects of multiple roofing technologies makes a hybrid roof assembly worth the hype. It provides the best aspects of a single-ply membrane including a reflective surface for improved energy efficiency, and increased protection against chemical exposure and ponding water, while the asphaltic base increases overall system waterproofing redundancy, durability and protection. The ability to be used in both new construction and recover scenarios makes a multi-ply hybrid roof an assembly choice that is here to stay.Interested in learning more about designing school rooftops? Check out available design resources school roof design resources here. And as always, feel free to reach out to the Building & Roofing Science team with questions.This article was written by Kristin M. Westover, P.E., LEED AP O+M, Technical Manager, Specialty Installations, in partnership with Benjamin Runyan, Sr. Product Manager - Asphalt Systems.

By Authors Kristin Westover

December 28, 2023